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Accurate tumor classification is crucial to the proper treatment of cancer. To now, sparse representation (SR) has shown its great
performance for tumor classification.This paper conceives a new SR-basedmethod for tumor classification by using gene expression
data. In the proposed method, we firstly use latent low-rank representation for extracting salient features and removing noise from
the original samples data.Then we use sparse representation classifier (SRC) to build tumor classification model.The experimental
results on several real-world data sets show that our method is more efficient and more effective than the previous classification
methods including SVM, SRC, and LASSO.

1. Introduction

Tumor is a solid lesion caused by the abnormal growth of
cells. A timely accurate treatment is very important clinically.
The premise of an accurate treatment is an exact diagnosis
due to the heterogeneity of cancer. That is, we need to
classify them accurately before treating tumors. Current
methods for classifying cancer malignancies mostly rely on
a variety of morphological, clinical, or molecular variables.
Despite recent progresses, there are still many uncertainties
in diagnosis.The advent of DNAmicroarray and RNA seq [1]
makes it possible to analyze tumor samples and classify them
based on gene expression profiles. Moreover, we can get the
expression data of tens of thousands of genes through DNA
microarray or RNA-seq simultaneously.

Many methods for molecular data classification or clus-
tering based on gene expression data have appeared in this
area [2–14]. Huang and Zheng used independent component
analysis [5] to extract features; Gao and Church introduced
sparse nonnegative matrix factorization for feature extrac-
tion [4]; Zheng et al. proposed metasample-based sparse
representation [7], and Furey et al. used support vector

machines [8] to classify the gene expression data. All
thesemethods have achieved impressive classification perfor-
mances.

Recently published sparse representation classification
(SRC) is also a powerful tool for processing gene expression
data. SRC method was inspired by many theories such as
Basis pursuing [15], compressive sensing for signal recon-
struction [16], and least absolute shrinkage. It has already
been widely used in face recognition [17] and texture clas-
sification [18]. In SRC method, test samples can be only
represented as a sparse linear combination of the training
samples from the same class. Furthermore, an imposed 𝑙

1
-

regularized least square optimization is used to calculate an
SR coefficient vector with only a few significant coefficients.
In theory, a test sample can be well represented by only using
the training samples from the same class. However, there
is too much noise in gene expression data, which causes
that the discriminative features are not obvious and the test
samples can also be represented by some training samples
from different classes. This will decrease the classification
accuracy. To reduce noise [19–21] and get salient features [20]
for tumor classification, in this paper, we introduce latent
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low-rank representation to preprocess gene expression data.
By combining it with SRC algorithm, we propose a new
method for tumor classification.

Latent low-rank representation (LatLRR) is a kind of the-
ory which can be used to extract principal and salient features
from original data. LatLRR is the improved version of LRR.
The two methods can be resolved by the inexact augmented
Lagrangemultiplier (ALM)optimization. In [19–22], LRRhas
been successfully used for the recovery of subspace structure,
subspace segmentation, feature extraction, outlier detection,
and so forth. In [23], the author introduced LRR theory for
face recognition in order to remove noise and achieved an
impressive result. Based on these successful applications, in
this paper, we introduce LatLRR into sparse representation
classifier for tumor classification. Firstly, we use LatLRR to
remove noise from original data and extract salient features.
Then based on the new extracted salient features, we design
sparse representation classifier to classify new test samples.
We referred to the proposedmethod as SRC-based latent low-
rank representation (SRC- LatLRR).

The rest of the paper is organized as follows. Section 2
describes our proposed SRC-LatLRR method in detail. We
firstly review SRC and latent low-rank representation meth-
ods in Sections 2.1 and 2.2, respectively. Then we present
our method in detail in Section 2.3. Section 2.4 specifies our
experimental setting. In Section 3, we evaluate our method
using several publicly available gene expression data sets.
Section 4 concludes the paper and outlines our future work.

The abbreviations used in this paper are summarized in
the Abbreviations section.

2. Methods

2.1. Sparse Representation Classification. Sparse representa-
tion classification is a supervised classification. Let𝑊 ∈ 𝑅

𝑚×𝑛

denote a training sample matrix with 𝑛 samples and𝑚 genes.
As we know, each DNA microarray chip usually contains
thousands of genes; the number of genes is much larger than
tumor samples; that is,𝑚 ≫ 𝑛.

Let 𝑐
𝑙
be the lth sample of 𝑊 and the 𝑛 samples

are divided into 𝑘 object classes. Assuming that there are
𝑛
𝑖
samples belonging to 𝑖th class and making up 𝑊

𝑖
=

[𝑐
𝑖,1
, 𝑐
𝑖,2
, . . . , 𝑐

𝑖,𝑛𝑖
], the whole data set can be reexpressed as

𝑊 = [𝑊
1
,𝑊
2
, . . . ,𝑊

𝑘
]. Suppose that a new testing sample

𝑦 ∈ 𝑅
𝑚 belongs to 𝑖th class. Based on the theory of sparse

representation, 𝑦 would lie in the linear span of the training
samples𝑊

𝑖
; that is,
𝑦 = 𝛼

𝑖,1
𝑐
𝑖,1
+ 𝛼
𝑖,2
𝑐
𝑖,2
+ ⋅ ⋅ ⋅ + 𝛼

𝑖,𝑛𝑖
𝑐
𝑖,𝑛𝑖
, (1)

where 𝛼
𝑖,𝑗
∈ 𝑅 is a scalar and 𝑗 = 1, 2, . . . , 𝑛

𝑖
.

Supposing a linear representation coefficient vector 𝑥
0
∈

𝑅
𝑛, 𝑦 can be also rewritten as

𝑦 = 𝑊𝑥
0
. (2)

Ideally, if the training samples are sufficient and the training
samples sets that belong to different class are disjoint each
other, then we have

𝑥
0
= [0, . . . , 0, 𝛼

𝑖,1
, 𝛼
𝑖,2
, . . . , 𝛼

𝑖,𝑛𝑖
, 0, . . . , 0] ∈ 𝑅

𝑛
; (3)

that is, in 𝑥
0
, only the entries corresponding to the same class

as 𝑦 are nonzero.
From the above analysis, it can be seen that we can classify

the test sample𝑦 according to𝑥
0
. So the key problem is how to

calculate 𝑥
0
in (2). As in [7], 𝑥

0
would be sparse if the number

of object classes 𝑘 is large; this is what sparse representation
implies. According to the theory of compressive sensing [16,
24–26] and SR, 𝑥

0
can be achieved by solving the following

𝑙
1
-minimization problem:

∧

𝑥
1
= argmin‖𝑥‖1 s.t. 𝑊𝑥 = 𝑦. (4)

This problem can be solved by standard linear program-
ming methods [15]. But (4) has no exact solutions since𝑚 ≫

𝑛. Then a generalized version of (4) can be conceived:

𝐽 (𝑥, 𝜆) = min
𝑥
{
󵄩󵄩󵄩󵄩𝑊𝑥 − 𝑦

󵄩󵄩󵄩󵄩2 + 𝜆‖𝑥‖1} , (5)

where 𝜆 is a scalar regularization. This function can balance
the degree of noise by using 𝜆. In this study, we solve this
function by the truncated Newton interior-point method
[27].

2.2. Latent Low-Rank Representation. Latent low-rank repre-
sentation is an extension of low-rank representation. Con-
sider an observed data matrix 𝑋 = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
] ∈ 𝑅

𝐷×𝑛,
where each column vector 𝑥

𝑖
is a sample, and a dictionary

𝐴 = [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
] ∈ 𝑅
𝐷×𝑚, where 𝑎

𝑖
is also a sample. 𝑋 can

be linearly represented by the dictionary. That is,

𝑋 = 𝐴𝑍, (6)

where 𝑍 = [𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
] ∈ 𝑅

𝑚×𝑛 is a coefficient matrix
and each 𝑧

𝑖
is the representation of 𝑥

𝑖
. Equation (6) means

that each column vector of 𝑋 can be represented by a linear
combination of the bases in 𝐴. In (6), the dictionary 𝐴
should be overcomplete enough to represent any observed
data matrix 𝑋. But meanwhile, this causes multiple feasible
solutions of 𝑍 to (6). To achieve the optimal solution, low
rankness criterion is introduced to (6):

min
𝑍

rank (𝑍) , s.t. 𝑋 = 𝐴𝑍. (7)

Here, the optimal solution 𝑍∗ is the so-called lowest-
rank representation of data 𝑋 with respect to the dictionary
𝐴. Unfortunately, function (7) can not be easy to solve
because of the discrete nature of the rank function. By matrix
completion method [28–30], we replace solving low-rank
problem with dealing with nuclear norm [31]; then problem
(7) can be rerepresented as

min
𝑍

‖𝑍‖∗, s.t. 𝑋 = 𝐴𝑍, (8)

where ‖𝑍‖
∗
means the nuclear norm of matrix 𝑍, that is, the

sum of the singular values of matrix 𝑍.
Strictly speaking, the dictionary 𝐴 should be overcom-

plete and noiseless. But this kind of dictionary is difficult to
get. In practice, we usually use observed data matrix 𝑋 itself
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as the dictionary [19, 21, 32]. Finally we have the following
convex optimization problem:

min
𝑍

‖𝑍‖∗, s.t. 𝑋 = 𝑋𝑍. (9)

To solve this equation, two conditions need to be met.
Firstly, the data sampling 𝑋 should be sufficient. Secondly,
the data sampling 𝑋 should also contain sufficient noiseless
data to achieve robust capability. In fact, the first one can be
easily met but the second one not. Because gene expression
data are usually noisy, in reality, function (9) may be invalid
and not robust.

To solve the problem in (9), we introduce the following
LRR problem [20]:

min
𝑍

‖𝑍‖∗, s.t. 𝑋
𝑂
= [𝑋
𝑂
, 𝑋
𝐻
] 𝑍, (10)

where 𝑋
𝑂

is the observed data matrix and the 𝑋
𝐻

is
the unobserved data, that is, the hidden data. We use the
concatenation of 𝑋

𝑂
and 𝑋

𝐻
as a dictionary. The optimal

result of (10) is 𝑍∗
𝑂,𝐻

= [𝑍
∗

𝑂|𝐻
; 𝑍
∗

𝐻|𝑂
], where 𝑍∗

𝑂|𝐻
and 𝑍∗

𝐻|𝑂

correspond to𝑋
𝑂
and𝑋

𝐻
, respectively.

By solving (10), the two problems above can be solved
well. Then our next mission is to recover the affinity matrix
𝑍
∗

𝑂|𝐻
by using only 𝑋

𝑂
in the absence of the hidden data

𝑋
𝐻
. The method is called latent low-rank representation

(LatLRR), which is an improvement of LRR.
Supposing we have two matrices 𝑋

𝑂
and 𝑋

𝐻
, then by

solving (10) we have the following equations:

𝑍
∗

𝑂|𝐻
= 𝑉
𝑂
𝑉
𝑇

𝑂
, 𝑍

∗

𝐻|𝑂
= 𝑉
𝐻
𝑉
𝑇

𝑂
, (11)

where 𝑉
𝐻
and 𝑉

𝑂
can be obtained through computing the

skinny singular value decomposition of [𝑋
𝑂
, 𝑋
𝐻
] = 𝑈∑𝑉

𝑇,
and 𝑉 = [𝑉

𝑂
; 𝑉
𝐻
]. Namely,𝑋

𝑂
= 𝑈∑𝑉

𝑇

𝑂
and𝑋

𝐻
= 𝑈∑𝑉

𝑇

𝐻
.

Depending on function (11), we have

𝑋
𝑂
= [𝑋
𝑂
, 𝑋
𝐻
] 𝑍
∗

𝑂,𝐻

= 𝑋
𝑂
𝑍
∗

𝑂|𝐻
+ 𝑋
𝐻
𝑍
∗

𝐻|𝑂

= 𝑋
𝑂
𝑍
∗

𝑂|𝐻
+ 𝑋
𝐻
𝑉
𝐻
𝑉
𝑇

𝑂

= 𝑋
𝑂
𝑍
∗

𝑂|𝐻
+ 𝑈∑𝑉

𝑇

𝐻
𝑉
𝐻
𝑉
𝑇

𝑂

= 𝑋
𝑂
𝑍
∗

𝑂|𝐻
+ 𝑈∑𝑉

𝑇

𝐻
𝑉
𝐻

−1

∑𝑈
𝑇
𝑋
𝑂
.

(12)

Let 𝐿∗
𝐻|𝑂

= 𝑈∑𝑉
𝑇

𝐻
𝑉
𝐻
∑
−1
𝑈
𝑇; then we have the following

simple function:

𝑋
𝑂
= 𝑋
𝑂
𝑍
∗

𝑂|𝐻
+ 𝐿
∗

𝐻|𝑂
𝑋
𝑂
. (13)

If 𝑋
𝑂
and 𝑋

𝐻
come from the same collection of low-rank

subspaces, then both 𝑍∗
𝑂|𝐻

and 𝐿∗
𝐻|𝑂

should be of low-rank,
so we can achieve

min
𝑍𝑂|𝐻,𝐿𝐻|𝑂

rank (𝑍
𝑂|𝐻
) + rank (𝐿

𝐻|𝑂
)

s.t. 𝑋
𝑂
= 𝑋
𝑂
𝑍
𝑂|𝐻

+ 𝐿
𝐻|𝑂
𝑋
𝑂
.

(14)

Just as in [28–30], we also change the above rank min-
imization problem to the nuclear norm. Then we have the
following convex optimization problem:

min
𝑍,𝐿

‖𝑍‖∗ + ‖𝐿‖∗ s.t. 𝑋 = 𝑋𝑍 + 𝐿𝑋. (15)

Here, we replace 𝑋
𝑂
, 𝑍
𝑂|𝐻

, and 𝐿
𝐻|𝑂

with 𝑋, 𝑍, and
𝐿, respectively, for ease of representation. In (15), 𝑋 is the
noiseless observed data. By considering there may exist
corrupted data or noise in 𝑋, we also need to introduce a
denoising model about (15); then we have

min
𝑍,𝐿

‖𝑍‖∗ + ‖𝐿‖∗ + 𝜆‖𝐸‖1 s.t. 𝑋 = 𝑋𝑍 + 𝐿𝑋 + 𝐸, (16)

where 𝜆 > 0 is a scalar and ‖𝐸‖
1
is the 𝑙

1
-norm of sparse noise

matrix 𝐸. If 𝜆 → +∞, the problem (16) will be equivalent
to (15), that is, no noise in the observed data 𝑋. In (16), the
optimal solutions 𝑋𝑍∗, 𝐿∗𝑋, and 𝐸∗ represent the principal
features, salient features, and noise, respectively.

To solve the LatLRR problem listed in (16), we introduce
the augmented Lagrange multiplier (ALM) [33] method and
revise (16) as follows to meet the requirement of ALM
algorithm:

min
𝑍,𝐿,𝐽,𝑆,𝐸

‖𝑍‖∗ + ‖𝐿‖∗ + 𝜆‖𝐸‖1 s.t. 𝑋 = 𝑋𝑍 + 𝐿𝑋 + 𝐸,

𝑍 = 𝐽, 𝐿 = 𝑆.

(17)

This problem can be solved by ALM method which
minimizes the following augmented Lagrange function:

‖𝐽‖∗ + ‖𝑆‖∗ + 𝜆‖𝐸‖1 + tr (𝑌𝑇
1
(𝑋 − 𝑋𝑍 − 𝐿𝑋 − 𝐸))

+ tr (𝑌𝑇
2
(𝑍 − 𝐽)) + tr (𝑌𝑇

3
(𝐿 − 𝑆))

+
𝜇

2
(‖𝑋 − 𝑋𝑍 − 𝐿𝑋 − 𝐸‖

2

𝐹
+ ‖𝑍 − 𝐽‖

2

𝐹
+ ‖𝐿 − 𝑆‖

2

𝐹
) ,

(18)

where tr(⋅) and ‖ ⋅ ‖
𝐹
denote the trace and Frobenius norm

of a matrix, respectively. 𝜇 > 0 is a penalty parameter. More
details about (18) can be found in [33].

2.3. Sparse Representation Classification Based on LatLRR.
Since LatLRR can extract the salient features and remove
noise from original data sets, in this study, before using
observed data for classification, we firstly use LatLRR to
suppress noise and get the salient features. Then we use the
denoised data for tumor classification; that is, we factorize the
observed data𝑋 into

𝑋 = 𝑋𝑍 + 𝐿𝑋 + 𝐸. (19)

Here, we only use𝐷 = 𝐿𝑋 for data classification. For a test
sample 𝑦, we can calculate its SR by the following function:

𝐽 (𝑥, 𝜆) = min
𝑥
{
󵄩󵄩󵄩󵄩𝐷𝑥 − 𝐿𝑦

󵄩󵄩󵄩󵄩2 + 𝜆‖𝑥‖1} , (20)

where the parameter𝜆 > 0 can be determined experimentally
and 𝑥 is a coefficient vector. Assuming the test sample 𝑦
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belongs to one of target classes, the training data set is
sufficient. When classifying 𝑦, we introduce 𝐿𝑦, where 𝐿
is a square matrix obtained through LatLRR method when
extracting the salient features.

Ideally, 𝐿𝑦 can be linearly represented by the samples
from the same class in 𝐷. Namely, the representation vector
𝑥 should be sparse and the nonzero entries are associated
with the columns of 𝐷 from the same class. This will lead
us to classify the test samples. However, noise and modeling
errors will also introduce some nonzero entries to 𝑥 which
correspond to the columns of𝐷 from themultiple classes [17].
To solve this problem, we classify 𝐿𝑦 based on how well it can
be reconstructed by using the coefficients from each class as
in [17].

Using the result of (20), we construct 𝛿
𝑖
(𝑥) as the charac-

teristic function which selects the coefficients associated with
the 𝑖th class in the coefficient vector 𝑥. By only using 𝑖th class
coefficients to reconstruct the test sample 𝐿𝑦 as 𝑦

𝑖
= 𝐷𝛿
𝑖
(𝑥),

we can classify 𝐿𝑦 into the minimum residual class between
𝐿𝑦 and 𝑦; that is,

min
𝑖

𝑟
𝑖
(𝑦) =

󵄩󵄩󵄩󵄩𝐿𝑦 − 𝐷𝛿𝑖 (𝑥)
󵄩󵄩󵄩󵄩2. (21)

Our classification algorithm can be summarized as follows.

Input. Observed data 𝑋 ∈ 𝑅
𝑚×𝑛 for 𝑘 classes; test

sample 𝑦.

Step 1. Normalize the columns of𝑋.
Step 2. Extract the salient features of 𝑋 and
remove to some extent noise to get data 𝐷
defined in (19).
Step 3. Solve the optimization problem defined
in (20).
Step 4. Compute the residuals 𝑟

𝑖
(𝑦) =

‖𝐿𝑦 − 𝐷𝛿
𝑖
(𝑥)‖
2
.

Output. Identity(𝑦) = arg min
𝑖
𝑟
𝑖
(𝑦).

Our method can be seen as the combination of SRC [17]
and latent low-rank representation for feature extraction [20],
so we named it as SRC-LatLRR. In SRC, the test sample is
represented as a sparse linear combination of the training
samples from the same class. In LatLRR, noise is removed to
some extent and salient features are simultaneously extracted
from the training samples. So the introduction of LatLRR can
improve the classification accuracy of SRC in a way.

2.4. Evaluation of the Performance. To evaluate our proposed
method, we compare our method with SRC [17, 34], LASSO
[35], and SVM [8, 36, 37]. SVM has been proved to be
one of the best classifiers for classifying data in the area of
“high dimensionality and small sample size” [36, 37]. We do
binary classification andmulticlass classification experiments
in Sections 3.1 and 3.2, respectively. During the experiment,
the best results of SRC, LASSO, and SVM are also used to
compare with those of our method, which were achieved
by choosing appropriate parameters experimentally. As the
number of tumor sample is too small, we use stratified 10-
fold cross validation in all our experiments. In the multiclass

Table 1: Three binary data sets used in the experiments.

Datasets Samples Genes
Class 1 Class 2

Colon cancer 40 22 2000
Prostate cancer 77 59 12600
DLBCL 58 19 5469

Table 2: Classification accuracies by different methods for the three
binary data sets.

Datasets SVM LASSO SRC SRC-LatLRR
Colon cancer 85.48 85.48 85.48 90.32
Prostate cancer 91.18 91.91 94.85 94.12
DLBCL 96.10 96.10 97.40 97.40

classification experiments, we do not use LASSO method
because it is designed only for binary class classification
problems [35]. As we know, dimensionality reduction can
improve the classification performance and computing speed,
so we reduce data dimensionality using between-category
to within-category sums of squares methods in our experi-
ments.

3. Experimental Results

3.1. Two-Class Classification Problem. In this subsection,
three two-class microarray data sets are used to evaluate our
method: colon cancer [38], prostate cancer [39], and diffuse
large B-cell lymphoma [40].

The colon data set contains 62 samples consisting of 40
tumor and 22 normal. The prostate data set contains prostate
tumors and normal prostate samples, each consisting of the
expression levels of 12600 genes. For the DLBCL data set,
the gene expression values were measured by high-density
oligonucleotide microarrays. An overview of the three data
sets is given in Table 1.

The classification results by using SVM, LASSO, SRC, and
the proposed SRC-LatLRR are listed in Table 2. FromTable 2,
we can see that our method SRC-LatLRR performs well on
all the three data sets. Even the performance of SRC-LatLRR
is not better than SRC on the prostate cancer data set, but
it is better than SVM and LASSO. In summary, SRC has an
advantage for the prostate cancer and DLBCL data sets, but
SRC-LatLRR is the best classifier for the colon cancer and
DLBCL data sets.

To further evaluate our method, in this experiment,
we also introduced BW feature selection in our method to
classify these three data sets. The results are listed in Table 3,
and the number of genes selected is given in the parenthesis
behind data set. From Table 3, we can see that after feature
selection, our proposed classification method outperforms
the other three classificationmethods, and it can even achieve
an accuracy of 100% for the DLBCL data set.

3.2. Multiclass Classification Problem. In this subsection, we
use fourmulticlass data sets to further check the classification
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Table 3: Classification accuracies by different methods with gene
selection for the three binary data sets.

Datasets SVM LASSO SRC SRC-LatLRR
Colon cancer
(1000) 87.1 87.1 87.1 91.94

Prostate cancer
(1500) 94.85 91.18 95.59 96.32

DLBCL (800) 97.40 93.51 97.40 100

Table 4: Descriptions of the four multiclass data sets used in DNA
classification experiments.

Dataset Class counts Samples Genes
Lung cancer 5 203 12600
Leukemia 3 72 11225
11 tumors 11 174 12533
9 tumors 9 60 5726

Table 5: Classification accuracies by different methods for the
multiclass data sets.

Dataset SVM SRC SRC-LatLRR
Lung cancer 96.05 95.07 95.07
Leukemia 96.60 95.83 98.61
11 tumors 94.68 94.83 94.83
9 tumors 65.10 66.67 66.67

performance of SRC-LatLRR. The four data sets are lung
cancer [41], leukemia [42], 11 tumors [43], and 9 tumors
[44].

In lung cancer data set, there are four classes of lung
cancer and normal class. This data set contains 203 samples.
For leukemia data set, all the samples are classified into
acute myelogenous leukemia, acute lymphoblastic leukemia,
or mixed-lineage leukemia. The data set includes 72 samples
with 11225 genes. For 11 tumors, there are 11 classes of
samples, which are ovary, bladder/ureter, breast, colorectal,
gastroesophagus, kidney, liver, prostate, pancreas, adeno
lung, and squamous lung. This data set includes 174 samples.
For the 9 tumors data set, there are 60 samples with 5726
genes.These 9 types of tumors are non-small-cell lung, colon,
breast, ovarian, leukemia, renal, melanoma, prostate, and
central nervous system.The detailed descriptions about these
four data sets are listed in Table 4. All the four data sets were
produced by oligonucleotide microarrays and the analysis
tool Affymetrix GENECHIP [36].

The experimental results are listed in Table 5. From these
results, we can see that the proposed method SRC-LatLRR
does not have a clear advantage over SVM and SRC. The
reason may be that in these data sets, the training samples
of each class are very few so that the sample space is not
complete.

We then introduced BW feature selection before applying
our method. The obtained results are listed in Table 6. From
the results we can see that the proposed method classified
leukemia well. For the other data sets, it has no clear

Table 6: Classification accuracies by different methods with gene
selection for the multiclass data sets.

Dataset SVM SRC SRC-LatLRR
Lung cancer (2000) 96.62 95.07 95.57
Leukemia (3000) 96.90 95.83 98.61
11 tumors (1000) 96.07 95.40 95.40
9 tumors (2000) 85.84 71.67 80.00
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Figure 1: The changing curves of classification accuracy and
removed noise level with 𝜆 on the colon data set.

advantage. But it performed better than SRC for all the four
data sets.

3.3. The Choice of the Balanced Parameter. In this section,
we use the data sets described in Section 3.1 to check how
𝜆 in (16) affect the classification performance. We show the
accuracies and the removed noise level by our method at
different values of 𝜆 in Figures 1, 2, and 3 for the colon,
prostate, and DLBCL data sets, respectively. From (16), we
know that the lower the 𝜆 is, the bigger the noise level is
removed. For these three figures we use ‖𝐸‖

1
to represent the

level of the removed noise. From these three figures we can
see that the noise that we remove from the original data can
not be too much, or it will reduce the accuracy. The reason is
that if 𝜆 is set to be too small, useful information may be also
removed besides noise. On the contrary, if 𝜆 is too big, the
noise that was removed is too little, and we still can not get
a good classification result. The experiment suggests that for
colon data sets, 𝜆 = 0.011 is the best choice and 𝜆 = 0.096 and
𝜆 = 0.1 for the prostate and DLBCL data sets, respectively.

4. Conclusions

For gene expression data, cancer diagnosis is one of the
most important clinical applications. In this paper, we have
proposed a new SR-based method for tumor classification
which uses the noiseless salient features extracted from the
original samples to classify a test sample. We compared
our method with several state-of-the-art methods including
SVM, LASSO, and SRC on seven data sets. The results of
experiments show that the proposed method is better than
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Figure 2: The changing curves of classification accuracy and
removed noise level with 𝜆 on the prostate data set.
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Figure 3: The changing curves of classification accuracy and
removed noise level with 𝜆 on the DLBCL data set.

SVM, LASSO, and SRC in a way. These demonstrate that
SRC-LatLRR is effective and efficient for tumor classification.
We also introduced gene selection into our method. The
results show that gene selection can improve the classification
accuracy to some extent.

During the study we also found that, for the optimal
result of LatLRR on the observed samples, 𝑍∗ represents the
affinity matrix of samples [21]. In theory, the affinity matrix
can be used to cluster samples. In future, we will extend it to
investigate the property of sample clusters.

Abbreviations

SR: Sparse representation
SRC: Sparse representation classification
LRR: Low-rank representation
LatLRR: Latent low-rank representation
ALM: Augmented Lagrange multiplier
SVM: Support vector machines
LASSO: Least absolute shrinkage and selection operator
BW: Between-categories to within-category.
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